

# **Simulation Tools**



for

# **Evaluating the Operational Performance**of the **Mobile Offshore Base**

Ronald Brackett & Michele Murdoch

Naval Logistics Conference
15 November 2000





### **MOB General Functions**

- A multi-functional, reconfigurable, floating platform for U.S. and Allied Forces that provides operational and sustainment basing support for:
  - » Naval Operations
  - » Flight Operations
  - » Personnel
  - » Equipment Storage
  - » Supply & Maintenance
  - » Military Operations Other Than War



#### **MOB** as an Intermediate Support Base

Theater of Operations



MOB

• V-22

Helos

- Fast Sealift Ships
- STOL A/C (e.g., NO-TAIL)

- LCAC Hostile
- Enhanced LCAC
- · LCU (X)

· STOL A/C (e.g., NO-TAIL)

Shuttle (e.g., Slice)

- MSC Ships
- Container Ships (C)
- Tankers (C)
- AMC Aircraft (e.g., C-5, C-141, C-17)

Host Nation Facilities

- MSC Ships
- Container Ships (C)
- Tankers (C)
- Aircraft (e.g., C-17, C-130, V-22)

Not Available

Nation



### Major Mission Specific Capabilities

|   | 0 | B |
|---|---|---|
| M |   |   |
|   |   |   |

| /        | . <b>4.</b> 2 ∠ ∠ . |           | V/O      | YOUX |
|----------|---------------------|-----------|----------|------|
| צענע     | tics                | $MV \geq$ | VK       |      |
|          |                     |           | <u> </u> |      |
| <i>/</i> |                     |           |          |      |

#### Daily Cargo Throughput in support <u>per</u> <u>CVBG</u>

- Provision/Store
  - » 24 Metric Tons
- DFM
  - » 580,000 Liters
- **JP5** 
  - » 1 Million Liters
- Ordnance
  - » 150 Metric Tons

#### SOF

# Up to 10,000 SOF personnel

74 Rotary/Fixedwing aircraft, 22 combatant craft

#### Water

- 6 Million Liters
- Fuel & Dry Cargo for SOF equipment
  - 40.5 MillionLiters
  - 9,700 MetricTons Cargo

#### **OMFTS**

- Up to 20,000 MAGTF personnel
- 128 Rotary/Fixed-wing aircraft, 62 lighterage
- Strategic Sealift and Airlift (C-17 capable)
- **Water** 
  - **–24 Million Liters**
- Fuel & Dry Cargo for MAGTF equipment
  - -67.5 Million Liters
  - -16,200 Metric Tons Cargo

**EXAMPLE** 



# Why Simulation?



- MOB Concepts are unprecedented in size and scope of operational requirements.
- No experience base
- Differences in proposed concepts:
  - Size & mass
  - Response to environmental loads
  - Storage volume
- Allows an objective and consistent comparison of concepts and systems.



# Types of Simulation Models

Systems or Processes



Continuous Time



# **MOB Simulation Models**



| Models                   | <u>Types</u>                      | <b>Software</b> |  |
|--------------------------|-----------------------------------|-----------------|--|
| Constructability         | Discrete Event                    | > Extend        |  |
| Air Cargo Transfer Rate  | Discrete Event                    | > Extend        |  |
| Ship Cargo Transfer Rate | Discrete Event                    | > Arena         |  |
| Operational Availability | <ul><li>Continuous Time</li></ul> | Extend          |  |





# MOB Constructability Models



# **Mob Constructability Models**

# VOB

- Purpose of Models:
  - Could the Structure be Built?
  - Over What Time Period?
  - At What Cost?
  - With What Risks?
- Common Features:
  - Discrete-Event, Based in Extend
  - 2 Scenarios Modeled for Each of 5 Concepts
  - Assumes Multiple Shipyards Contribute



# **MOB** Constructability Models



#### Simulations Address:

- Availability of Raw Materials
- No. of Shipyards Involved
- Availability of qualified workers
- Time Required for Each Step

#### Models Incorporate:

- Statistical Distributions to Simulate Availability of Parameters
- Fuzzy Logic Sets to Address Impact of Construction Management Issues



# MOB Constructability Models – Results

#### **RESULTS:**

- MOB Construction is Feasible Using Projected Capabilities of U.S. Shipbuilding and Construction Industry
- Costs and schedule results ranged from \$300M to \$1500M and 3 to 5 years per module, depending on concept & module length.
- Models can be used to evaluate alternative construction scenarios and conduct sensitivity studies.



# MOB Constructability Models – Weather Impacts



#### Results from Initial Simulations Showed:

- 23% increase in schedule
- 5% increase in cost (no hurricanes in data sample)





# Air Cargo Transfer Rate Model



# Air Cargo Transfer Rate Model



### Objective

Develop a model that will provide an assessment of aircraft and air cargo flow onboard a MOB

 Conduct a parametric analysis to determine the effect of various MOB configuration options on air cargo transfer rates.





### **MOB Runway Configuration Options**

#### 380 ft flight deck



#### 450 ft flight deck



#### 520 ft flight deck





# Air Cargo Transfer Rate Model





# Aircraft Sorties vs Number of Aircraft Available







# Parametric Air Operations Analysis









# Air Cargo Transfer Rate Results



- Adding a separate Taxiway does not improve Transfer Rate unless:
  - # of available aircraft > 30
  - # of MOB aircraft loading spots> 12
  - # of SAAF aircraft unloading spots > 12
- With a single Runway/Taxiway Runway utilization becomes saturated at 3 outbound flights/hr.
  - » Utilization: Take off = 34%, Landing = 36%, Taxi = 25%
- A separate Taxiway increases sortie rate by 33%, but runway still becomes saturated at just over 4 outbound flights/hr.
  - » Utilization: Take off = 45%, Landing = 48%





# Ship Cargo Transfer Rate Model



### **Ship Cargo Transfer Rate Model**

Create an analytically robust method to estimate cargo transfer rate between MOB and auxiliary vessels under variety of environmental conditions



#### Status

- Preliminary Model and Interem Report delivered - March 99
- Ship Motion analysiscompleted Aug 99
- Final Model and Report due March 00



### **Overall Modeling Strategy**







# Container Movement Steps



#### **Movement Steps**

- 1. Lift to travel position
- 2. Move to target
- 3. Focus on target\*
  Insert in Cell Guide\*
  Lower in Cell Guide\*
- 4. Latch
  Lift in Cell Guide\*
- 5. Lift to travel position
- 6. Move to unload

- 7. Drop to unload
- 8. Unlatch
- 9. Store on MOB
  (\*Gated operation)





### **Cargo Transfer Rate Model Conclusions**



- Simulation works as tool for determining transfer rate
- Preliminary results
  - Expect about 29 containers / hr as maximum transfer rate on MOB
  - Motion compensated crane design is likely choice for MOB, with manual backup capability
  - Capability of crane designs to acquire target should be focus of crane-testing programs
- Model needs to be calibrated from field test data



#### **Applied to Motion Data**



#### Max Velocity for Hatch 1 at SS4







- Motion Gates for Ramp Angle and Vessel Pitch
- Simulates Transfer of Both Self-Propelled and Tractor-Pulled Vehicles
- Separate Models for Transfer to and from Cargo Vessels



# RO/RO Cargo Transfer Models

#### **Applications:**

Estimating Rolling Cargo
 Transfer Rate Between Vessels

and MOB at Different Seastates and Headings

- Evaluate Different Equipment and Operating Parameters
  - Ramp Length
  - Number of Drivers
  - Distance to Storage Locations, etc.
- Input to Ao Model







# Operational Availability (Ao) Model



# **Operational Availability Model**

- Assess the performance of any MOB concept relative to the Mission Needs Statement
- Investigate the sensitivity of various performance parameters to changes in Concept Configuration and Mission Requirements





### What is Ao?



"Failed"

"Repaired"

Logistics Repair
Delay Time
Time
Time

Ao = Available Time
Total Time

Reliability — Available Time

Maintainability Repair Time

Supportability 

Logistics Delay Time



# Mission Scenario Diagram





Wind/wave/current Databases

Large-scale

Typhoon scale

- Quantify performance versus
  - Platform configuration,
  - Metocean characteristics of various sites,
  - Mission Requirements



# Met/Ocean Database Sites







# Environmental Conditions – North Atlantic Site







# Sea Cargo Transfer vs. Month





# **Ao Statistics - Site Comparison**



| Site            | Capability | Ao     | MTBF   | MTTR |
|-----------------|------------|--------|--------|------|
| North Atlantic  | Air Ops    | 0.9662 | 343.1  | 12.0 |
|                 | Sea Ops    | 0.5131 | 73.2   | 70.0 |
|                 | Stationkpg | 0.9986 | 1086.0 | 1.5  |
| Western Pacific | Air Ops    | 0.9903 | 957.3  | 9.4  |
|                 | Sea Ops    | 0.8676 | 296.0  | 45.2 |
|                 | Stationkpg | 0.9975 | 1239.8 | 3.1  |
| Arabian Sea     | Air Ops    | 0.9993 | 1580.7 | 1.1  |
|                 | Sea Ops    | 0.9048 | 715.6  | 75.3 |
|                 | Stationkpg | 0.9993 | 1580.7 | 1,1  |
| Sea of Japan    | Air Ops    | 0.9966 | 912.7  | 3.1  |
|                 | Sea Ops    | 0.9476 | 402.1  | 22.2 |
|                 | Stationkpg | 0.9987 | 1086.7 | 1.4  |

(Hours)



#### Why Simulation Modeling? - Revisited



- Creating models early in the program forces definition of system interfaces and guides the management team to asks a lot of important questions.
- Model input requirements identify data shortfalls
- Early reliability allocations are possible to *guide program*, identify technology shortfalls, etc.
- The Ao Model provides a *structure for integrating data* from many different development efforts.
- If causes of down time can be predicted, cost-effective backup systems can be identified and factored into the design before expensive ship-alts are required.



### **For More Information**



#### **Visit the MOB WEB Site:** http://mob.nfesc.navy.mil

